番茄深加工及其副产物利用研究现状

李颖慧1 王满生2 师俊玲1 曲文娟3

(1.西北工业大学生命学院,陕西 西安 710072;2.中国农业科学院麻类研究所,湖南 长沙 410205;3.江苏大学食品物理加工研究院,江苏 镇江 212013)

摘要:对国内外已报道的番茄皮、籽、残渣中有效成分的种类与特点,以及与之适应的综合加工利用技术进行归纳总结与对比分析,阐明了番茄加工副产物中番茄红素、膳食纤维、油脂、蛋白质等番茄副产物中主要营养成分的加工特性,以及不同方法与技术的适用性、特点及优缺点,提出了番茄加工副产物综合加工利用的问题与展望。

关键词:番茄;深加工;副产物;营养成分

中国是世界上最大的番茄生产国,番茄加工在中国有着重要的产业地位。番茄中富含番茄红素、酚类物质、维生素、有机酸等多种营养成分,食用价值高,其规模化加工制品主要有各种酱汁、饮料和果脯等。这些番茄制品的主要原料是番茄果肉,加工过程中会产生大量的皮、籽等副产物,约占番茄总原料的3%~8%[1]。文章拟对国内外已报道的番茄加工副产物的综合加工利用技术进行归纳总结与对比分析,以期加强番茄皮、籽、残渣等副产物的综合利用,为相关研究提供借鉴与参考。

1 番茄加工副产物中主要营养成分与加工性能

1.1 番茄红素

番茄红素是番茄中重要的功效性成分,主要存在于番茄果肉和果皮中,属于类胡萝卜素,遇光、热易分解。这是因为番茄红素的分子中含有多个共轭双键和非共轭双键,容易在加工条件下发生氧化和异构化降解[2]。如果加工方法选择不当会严重影响番茄红素的生物活性与生物利用率。实际生产中,应尽可能地选用有助于提高终产品中番茄红素含量和生物利用率的方法与技术。

据报道[3],热、光、氧、金属离子等因素诱导的氧化作用是导致番茄红素在加工过程发生降解的主要原因。例如,蒸煮、罐装、油炸、巴氏杀菌、干燥脱水等热处理均会显著降低产品中番茄红素含量与抗氧化功能[4-5]。然而,经过热加工的番茄制品中番茄红素的生物利用率高于新鲜番茄[5]。这是因为热处理诱导了番茄红素的异构化反应,使其从反式构型变为顺式异构体,后者的生物利用率高于前者;同时热处理破坏了番茄细胞的细胞壁结构,促进了细胞内番茄红素的释放[6]。一些研究[3-4]指出,高压处理、脉冲电场、超声处理,以及使用气调包装或添加抗氧化剂等,也能在一定程度上提高番茄制品中的番茄红素含量和生物利用率。

1.2 膳食纤维

膳食纤维主要存在于番茄皮渣中,是番茄加工副产物的主要成分,其在番茄皮中的含量可达80%以上[7]。通过酶解和酸碱处理均可实现番茄中膳食纤维的分离提取。其中,酶解法更为常用,所得膳食纤维的纯度更高,其加工条件温和(通常为60 ℃左右),但耗时较长(通常需要6 h以上)。常用的酶类主要有纤维素酶、糖化酶、淀粉酶和蛋白酶。酸碱法提取膳食纤维则较为简单、快速,但是需要高浓度的酸碱溶液,对设备的要求比较高,废液处理的环保压力较大[8]。同时,酸碱法能够提高膳食纤维的膨胀性和持水性;酶解法则有利于减少膳食纤维产品中粗蛋白、粗脂肪和淀粉等杂质含量,所得产品的色泽和持油力较好[9]。在选择番茄膳食纤维的提取方法时,应综合考虑产物的提取速度、纯度、特异性,以及产品品质等诸多因素。

1.3 油脂和蛋白质

番茄籽中含有大量的油脂和蛋白质,特别是亚油酸等不饱和脂肪酸,以及赖氨酸等必需氨基酸,有很好的综合利用价值。

目前用于提取番茄籽油的方法主要有压榨法、水酶法、超临界CO2萃取法、有机溶剂浸提法等。压榨法较为传统,所需设备简单,但是出油率低、残油率高、费时费力,正在被一些新兴的工艺所取代;有机溶剂浸提法是大工厂中常用的方法,油脂得率高、成本低,但是所得油脂通常还需要进一步精炼;超临界CO2萃取法能够最大程度地保留油脂中生物活性成分,而且出油率高,但所需设备昂贵,对技术人员操作技术要求较高[10];水酶法则是采用蛋白酶和淀粉酶进行处理,反应条件温和,能够较好地保护油脂活性成分,而且可以去除油脂中蛋白质等杂质,但是在提取过程中容易形成乳液,不利于油脂的提取[11]

番茄籽中的蛋白质含量高,品质好[12]。干燥的番茄渣中蛋白质含量可达21.9%,脱脂番茄籽的蛋白质含量可达38.7%[13]。番茄籽中蛋白质的提取方法主要有碱提酸沉法[14]和冷热破碎法[15]。据报道[16],提取温度和pH均会影响番茄籽蛋白质的理化性质和提取率。相对而言,冷破碎工艺的蛋白质提取率高于热破碎,但热破碎所得蛋白质的吸水力和吸油力较高[15];较高pH条件下所得蛋白质提取物的起泡性和泡沫稳定性,以及乳化性和乳化稳定性均较好[17]。通过调节提取温度和pH,可以影响番茄蛋白提取物的特性。

2 番茄副产物的综合利用

2.1 番茄皮

去皮是番茄制品加工中重要的单元操作之一,会对后续的番茄产品质量和得率产生重要影响。目前,有关番茄去皮的方法较多,其中,碱液剥离法最为常用,需要在pH>13和60~100 ℃以上的温度下进行处理,处理简单快速,但废弃液需要用酸中和后才能排放,环保压力大[18];欧姆加热法是将番茄置于氯化钠溶液中进行处理,其去皮效果与碱液法相当,但无碱液污染问题[19];红外去皮是近年来新兴的一种干法去皮技术[20],是利用红外线的表面加热特性和相对较低的穿透深度,使番茄表皮变松,而果实内部变化较小的原理达到去皮作用[21],具有耗水量少,操作简单、高效等优点。

作为番茄加工中的副产物,番茄皮通常会以皮渣混合物的形式存在,其含有大量的番茄红素、酚类物质、纤维素等功能成分,具有很好的开发利用前景。除了提取番茄红素外,还可以将番茄皮加工成可降解塑料[22]。目前,有关番茄皮渣的综合加工利用技术与方法还在不断开发与更新之中。

2.2 番茄籽

番茄籽中含有优质的油脂和蛋白质,被广泛应用于榨油和提取活性蛋白质。番茄籽油被《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》列为新食品原料,从而作为一种新型植物油走向市场,其含有丰富的番茄红素、亚油酸,以及其他多种天然抗氧化活性物质,具有多种生理功能:如其中含有的亚油酸具有扩张血管、防止血栓形成等潜在功能[23];番茄红素具有预防动脉粥样硬化、高血压和高血脂的功能活性[24];维生素E能够延缓衰老和抗氧化;天然抗氧化活性物质则具有提高肠道的抗氧化能力、润肠通便功效[25-26]。因此,番茄籽油有望被开发为特种优质保健植物油,从而大幅度提高番茄副产物的附加值[27]

番茄籽蛋白也具有较多良好的食品加工性能。在面包粉中加入番茄籽蛋白,能够有效提高面包中各种氨基酸,尤其是赖氨酸和蛋氨酸含量,营养强化作用明显;同时,还具有减少面包水分的散失、延长货架期、延缓淀粉老化、改善面包口感等作用[28]。此外,番茄籽蛋白也具有降低血液中胆固醇含量的作用,特别是显著降低血浆中胆固醇和低密度脂蛋白胆固醇含量[29]。总体而言,番茄籽蛋白不仅具有良好的营养价值,还能作为食品加工的配方之一[16],在保健食品、医药行业有着较好的应用潜力。

3 加工过程对番茄果肉粉中营养成分的影响

果肉是番茄中占比最大的部分。除了传统的番茄酱、番茄果脯、番茄浓缩汁以外,番茄粉成为近年来番茄果肉加工的新秀,得到了广泛应用,从而产生了番茄灌肠、番茄果冻、番茄酸奶、番茄面条等新型产品。在这些食品中加入番茄粉,不仅可以赋予食品鲜艳的颜色,还能提高食品中氨基酸、维生素C、还原糖含量[30]。然而,蕃茄粉加工过程与条件均会对产品的品质和营养价值产生显著影响,需要根据实际需要加以选择。

干燥是番茄粉加工的重要步骤,其中,热风干燥会导致番茄产品变色、皱缩[31-34],冷冻干燥则能更好地保留番茄原料中总酚和抗坏血酸含量。然而,综合生产成本、加工效率及营养物质保留率等多种因素,工业上多采用喷雾干燥法加工番茄粉[35]。用于番茄粉加工的破碎方法主要有冷破碎和热破碎两种,冷破碎是将番茄进行60 ℃预热处理后再破碎,热破碎则是在番茄破碎后再加热至80 ℃进行灭酶处理。相对而言,热破碎所得番茄酱的浓稠度大于冷破碎,产品颜色也较深[36-38]。两种破碎工艺均会导致产品中总氨基酸、糖类、维生素C含量下降,但对番茄红素含量影响不大[38-41]。在番茄粉加工中的浓缩环节,常压浓缩因为会导致严重的热敏性活性物质损失,已逐渐被真空蒸发浓缩所替代。膜分离和微波浓缩技术等新兴技术也被引入番茄加工中[34, 42]。其中,膜分离浓缩技术对番茄中营养物质的保留率较高[43],而真空微波浓缩则可以提高产品中番茄红素和L-抗坏血酸含量[44]

综上,番茄粉加工过程中所使用的方法的优缺点如表1所示。

表1 番茄粉加工不同阶段所用方法的优缺点对比

Table 1 Advantages and disadvantages of different methods used in the process of tomato powder

加工阶段加工方法优点缺点参考文献去皮红外加热绿色环保,剥离损失小,废液排放少新兴技术,未普遍应用[21,45]欧姆加热提高剥离性能、产品收率和质量需用盐溶液促进剥离,废液处理压力大[46]功率超声绿色环保;番茄红素含量高新兴技术,未普遍化;剥离损失大[47-48]冷冻剥离剥离损失小不能剥离黄绿青皮[49-50]酶法剥离对色泽和风味影响小,环保成本高,剥离效果差[21,51]蒸汽/热水处理工业上常用,设备简单,无污染产品质量低[52-53]碱液处理工业上常用,产量和质量高废弃碱液处理压力大[54]破碎冷破碎产品色泽明亮,风味好,总酸含量高果糖含量高,易褐变[36,38]热破碎产品的黏稠度高番茄红素损失多,色泽发暗;维生素C、氨基酸含量降低[36,38]浓缩常压蒸发浓缩成本低需高温,营养成分损失大[34,55]真空蒸发浓缩温度低能耗高[56]真空微波浓缩能耗低风味好,番茄红素和维生素C含量高[34,44]膜分离浓缩能耗低,速度快,保护热敏性活性物质存在膜污染问题;需与蒸发浓缩结合使用[42]干燥热风干燥抗氧化成分含量高于冷冻干燥产品色泽和风味差[32,57]冷冻干燥营养成分损失最少成本高[35]微波真空干燥快速、均匀、节能成本高[55,58]喷雾干燥操作连续,易于工业化,有利于热敏性物质保留番茄红素的氧化程度高[59-60]

4 结语

中国是番茄生产大国,加强番茄深加工及其副产物的综合利用具有重要的产业地位。然而,不同的加工方法与条件均会显著影响番茄中活性成分的保留率、提取率,以及生物利用率。选择合适的加工方法与条件,对于提高产品质量与营养价值至关重要。番茄果肉加工中产生大量的皮、籽、渣等副产物,其中含有丰富的番茄红素、膳食纤维、功能油脂、活性蛋白等生理活性成分,具有很高的综合利用价值。随着国家对环境保护重视程度的提高,番茄深加工技术的发展及对番茄副产物活性成分认知度的提高,以及国内外保健与功能食品产业的发展,番茄深加工及其副产物的综合利用必将具有十分重要的地位。

参考文献

[1]SOGI D S, KIRAN J, BAWA A S.Characterization and utilization of tomato seed oil from tomato processing waste[J].Journal of Food Science and Technology-Mysore, 1999, 36(3): 248-249.

[2]尚德军, 王军.番茄红素研究现状与展望[J].检验检疫科学, 2004(2): 59-61.

SHANG De-jun, WANG Jun.Lycopene research present situation and prospect[J].Quality Safety Inspection and Testing, 2004(2): 59-61.

[3]SAINI R K, BEKHIT E, ROOHINEJAD S, et al.Chemical stability of lycopene in processed products: A review of the effects of processing methods and modern preservation strategies[J].Journal of Agricultural and Food Chemistry, 2020, 68(3): 712-726.

[4]BENITO MARTINEZ-HERNANDEZ G, BOLUDA-AGUILAR M, TABOADA-RODRIGUEZ A, et al.Processing, packaging, and storage of tomato products: Influence on the lycopene content[J].Food Engineering Reviews, 2016, 8(1): 52-75.

[5]SHI J, LE MAGUER M.Lycopene in tomatoes: Chemical and physical properties affected by food processing[J].Critical Reviews in Food Science and Nutrition, 2000, 40(1): 1-42.

[6]HUSSEIN L, ELTOHAMY M.Vitamin A potency of carrot and spinach carotenes in human metabolic studies[J].International Journal for Vitamin and Nutrition Research, 1990, 60(3): 229-235.

[7]刘洵妤.改性番茄皮渣膳食纤维理化性质及其应用[D].重庆: 西南大学, 2011: 8.

LIU Xun-yu.Research on the physicochemical property and application of modified tomato pomace dietary fiber[D].Chongqing: Southwest University, 2011: 8.

[8]林文庭.番茄渣膳食纤维酶法提取工艺及其特性研究[J].中国食品添加剂, 2006(5): 55-57, 51.

LIN Wen-ting.Study on the technology of dietary fiber extracting from tomato residue by enzymatic method and the fiber’s properties[J].China Food Additives, 2006(5): 55-57, 51.

[9]ZHENG Gang, GUO Xiao-pei, ZHAO Guo-hua, et al.Effects of different extraction processes on the physico-chemical properties of tomato skin dietary fiber[J].Food Science, 2010, 31(16): 24-28.

[10]董海洲, 张绪霞, 刘传富, 等.番茄籽油的提取研究[J].中国粮油学报, 2007(6): 113-117.

DONG Hai-zhou, ZHANG Xu-xia, LIU Chuan-fu, et al.Extraction of tomato seed oil[J].Journal of the Chinese Cereals and Oils Association, 2007(6): 113-117.

[11]朱敏敏, 王永瑞, 刘文玉, 等.水酶法提取番茄籽油酶法破乳工艺的研究[J].食品工业, 2018, 39(4): 20-23.

ZHU Min-min, WANG Yong-rui, LIU Wen-yu, et al.Research on demulsification process of tomato seeds oil extracted by aqueous enzymatic[J].The Food Industry, 2018, 39(4): 20-23.

[12]KNORR D.Recovery of functional proteins from food-processing wastes[J].Food Technology, 1983, 37(2): 71-76.

[13]SZABO K, CATOI A F, VODNAR D C.Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients[J].Plant Foods for Human Nutrition, 2018, 73(4): 268-277.

[14]沈心妤, 许时婴, 王璋.番茄籽蛋白的提取工艺[J].食品工业科技, 2005(7): 107-109.

SHEN Xin-yu, XU Shi-ying, WANG Zhang.Extraction of tomato seed protein[J].Science and Technology of Food Industry, 2005(7): 107-109.

[15]SHAO Dong-yan, ATUNGULU G G, PAN Zhong-li, et al.Characteristics of isolation and functionality of protein from tomato pomace produced with different industrial processing methods[J].Food and Bioprocess Technology, 2014, 7(2): 532-541.

[16]MECHMECHE M, KACHOURI F, CHOUABI M, et al.Optimization of extraction parameters of protein isolate from tomato seed using response surface methodology[J].Food Analytical Methods, 2017, 10(3): 809-819.

[17]KIOSSEOGLOU V, THEODORAKIS K, DOXASTAKIS G.The rheology of tomato seed protein isolate films at the corn oil-water interface[J].Colloid and Polymer Science, 1989, 267(9): 834-838.

[18]AYVAZ H, SANTOS A M, RODRIGUEZ-SAONA L E.Understanding tomato peelability[J].Comprehensive Reviews in Food Science and Food Safety, 2016, 15(3): 619-632.

[19]WONGSA-NGASRI P, SASTRY S K.Effect of ohmic heating on tomato peeling[J].LWT-Food Science and Technology, 2015, 61(2): 269-274.

[20]PAN Zhong-li, LI Xuan, KHIR R, et al.A pilot scale electrical infrared dry-peeling system for tomatoes: Design and performance evaluation[J].Biosystems Engineering, 2015, 137: 1-8.

[21]LI Xuan, PAN Zhong-li, BINGOL G, et al.Feasibility study of using infrared radiation heating as a sustainable tomato peeling method[C]//Proceedings of the American Society of Agricultural and Biological Engineers International ASABE.Reno, Nevada: ASABE, 2009: 095689.

[22]刘功.废弃的西红柿皮可加工成环保塑料袋[J].包装世界, 2005(5): 33.

LIU Gong.Abandoned the tomato skin can be processed into green plastic bags[J].Packaging World, 2005(5): 33.

[23]SZABO K, DULF F V, DIACONEASA Z, et al.Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition[J].LWT-Food Science and Technology, 2019, 116: 108558.

[24]GRABOWSKA M, WAWRZYNIAK D, ROLLE K, et al.Let food be your medicine: Nutraceutical properties of lycopene[J].Food & Function, 2019, 10(6): 3 090-3 102.

[25]SZABO K, DULF F V, ELENI P, et al.Evaluation of the bioactive compounds found in tomato seed oil and tomato peels influenced by industrial heat treatments[J].Foods, 2021, 10(1): 110.

[26]SOTO-VACA A, GUTIERREZ A, LOSSO J N, et al.Evolution of phenolic compounds from color and flavor problems to health benefits[J].Journal of Agricultural and Food Chemistry, 2012, 60(27): 6 658-6 677.

[27]史瑞雪, 王惠玲.特种植物油脂新食品原料的营养生理功效比较研究[J].粮食与食品工业, 2016, 23(6): 13-19.

SHI Rui-xue, WANG Hui-ling.The comparative study on the nutritional physiological functions in the special vegetable oils of the novel food[J].Cereal & Food Industry, 2016, 23(6): 13-19.

[28]MIRONEASA S, CODINA G G.Dough rheological behavior and microstructure characterization of composite dough with wheat and tomato seed flours[J].Foods, 2019, 8(12): 626.

[29]SHAO Dong-yan, BARTLEY G E, YOKOYAMA W, et al.Plasma and hepatic cholesterol-lowering effects of tomato pomace, tomato seed oil and defatted tomato seed in hamsters fed with high-fat diets[J].Food Chemistry, 2013, 139(1/2/3/4): 589-596.

[30]常敬华, 何志明, 吴静, 等.番茄粉色酸奶的研制及其营养价值分析[J].中国乳品工业, 2012, 40(11): 51-54.

CHANG Jing-hua, HE Zhi-ming, WU Jing, et al.Processing of pink yogurt from tomatoes and it’s nutritional value analysis[J].China Dairy Industry, 2012, 40(11): 51-54.

[31]DOYMAZ I.Air-drying characteristics of tomatoes[J].Journal of Food Engineering, 2007, 78(4): 1 291-1 297.

[32]CHANG Ching-hui, LIN Hsing-yu, CHANG Chi-yue, et al.Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes[J].Journal of Food Engineering, 2006, 77(3): 478-485.

[33]GAWARE T J, SUTAR N, THORAT B N.Drying of tomato using different methods: Comparison of dehydration and rehydration kinetics[J].Drying Technology, 2010, 28(5): 651-658.

[34]ORIKASA T, KOIDE S, SUGAWARA H, et al.Applicability of vacuum-microwave drying for tomato fruit based on evaluations of energy cost, color, functional components, and sensory qualities[J].Journal of Food Processing and Preservation, 2018, 42(6): e13625.

[35]GUMUSAY O A, BORAZAN A A, ERCAL N, et al.Drying effects on the antioxidant properties of tomatoes and ginger[J].Food Chemistry, 2015, 173: 156-162.

[36]杜玉峰.番茄酱加工的冷破碎工艺和热破碎工艺[J].食品工业科技, 1994(5): 10-12.

DU Yu-feng.Cold crushing technology and hot crushing technology of ketchup processing[J].Science and Technology of Food Industry, 1994(5): 10-12.

[37]GOODMAN C L, FAWCETT S, BARRINGER S A.Flavor, viscosity, and color analyses of hot and cold break tomato juices[J].Journal of Food Science, 2002, 67(1): 404-408.

[38]赵文启.冷热破工艺对番茄酱贮藏期间品质变化影响的研究[D].石河子: 石河子大学, 2018: 33-34.

ZHAO Wen-qi.Effects of cold break process and hot break process on quality change of tomato paste during storage[D].Shihezi: Shihezi University, 2018: 33-34.

[39]刘凤霞, 张燕, 汪厚银, 等.热破碎番茄浆贮藏期间非酶褐变动力学分析[J].食品科学, 2011, 32(10): 260-265.

LIU Feng-xia, ZHANG Yan, WANG Hou-yin, et al.Kinetic analysis of non-enzymatic browning in hot break tomato paste during storage[J].Food Science, 2011, 32(10): 260-265.

[40]石秀花, 陶金华.新疆番茄冷破酱和热破酱的性质检测分析[J].农产品加工, 2015(24): 46-48.

SHI Xiu-hua, TAO Jin-hua.Detection and analysis of the properties of tomato cold broken and hot sauce in Xinjiang[J].Farm Products Processing, 2015(24): 46-48.

[41]ORDONEZ-SANTOS L E, VAZQUEZ-ODERIZ L, ARBONES-MACINEIRA E, et al.The influence of storage time on micronutrients in bottled tomato pulp[J].Food Chemistry, 2009, 112(1): 146-149.

[42]高辉, 安兴才, 祝霞, 等.膜分离技术在番茄汁浓缩工艺中的应用[J].甘肃农业大学学报, 2007(1): 123-126.

GAO Hui, AN Xing-cai, ZHU Xia, et al.Application of membrane separation technology in the concentration of tomato juice[J].Journal of Gansu Agricultural University, 2007(1): 123-126.

[43]徐伟, 孙建国, 陈敏, 等.采用正渗透技术浓缩番茄汁[J].食品与发酵工业, 2013, 39(12): 128-130.

XU Wei, SUN Jian-guo, CHEN Min, et al.Forward osmosis application in tomato juice processing[J].Food and Fermentation Industries, 2013, 39(12): 128-130.

[44]ORIKASA T, ENDO R, KATO K, et al.Evaluation of a novel concentration method for tomato puree by microwave[J].Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi, 2017, 64(9): 471-475.

[45]PAN Zhong-li, LI Xuan, BINGOL G, et al.Technical note: development of infrared radiation heating method for sustainable tomato peeling[J].Applied Engineering in Agriculture, 2009, 25(6): 935-941.

[46]WONGSANGASRI B, NGASRI P J.Ohmic heating of biomaterials: Peeling and effects of rotating electric field[D].Columbus, Ohio: The Ohio State University, 2004: 10.

[47]BHASKARACHARYA R K, KENTISH S, ASHOKKUMAR M.Selected applications of ultrasonics in food processing[J].Food Engineering Reviews, 2009(1): 31-49.

[48]WANG Li-juan, SONG Si-yuan, JIANG Peng, et al.Effect of different peeling methods on the peeling efficiency and quality of tomatoes[J].Food Science, 2017, 38(5): 26-31.

[49]张启灿.番茄热、冷连续处理去皮的效果[J].食品工业, 1981(2): 46-49.

ZHANG Qi-can.The effect of tomato peeling in hot and cold continuous treatment[J].The Food Industry, 1981(2): 46-49.

[50]BROWN H E, MEREDITH F I, SALDAMA G, et al.Freeze peeling improved quality of tomatoes[J].Journal of Food Science, 1970, 35(4): 485-488.

[51]徐振华, 武兰, 蒋雨辰, 等.酶制剂在番茄制品加工中的应用[J].食品工业科技, 2004(12): 103-104.

XU Zhen-hua, WU Lan, JIANG Yu-chen, et al.Application of enzyme preparation in processing tomato products[J].Science and Technology of Food Industry, 2004(12): 103-104.

[52]GARCIA E, BARRETT D M.Peelability and yield of processing tomatoes by steam or lye[J].Journal of Food Processing and Preservation, 2010, 30(1): 3-14.

[53]GARROTE R L, SILVA E R, BERTONE R A.Effect of thermal treatment on steam peeled potatoes[J].Journal of Food Engineering, 2000, 45(2): 67-76.

[54]TANGLERTPAIBUL T, RAO M A.Rheological properties of tomato concentrate as affected by particle size and methods of concentration[J].Journal of Food Science, 1987, 52(1): 141-145.

[55]刘盼盼, 任广跃, 段续, 等.微波处理技术在食品干燥领域中的应用[J].食品与机械, 2020, 36(12): 194-202.

LIU Pan-pan, REN Guang-yue, DUAN Xu, et al.Application of microwave treatment technology in the field of food drying[J].Food & Machinery, 2020, 36(12): 194-202.

[56]张是, 夏浪.西红柿粉的加工技术[J].河北农业科技, 2002(6): 45.

ZHANG Shi, XIA Lang.Processing technology of tomato powd-er[J].Hebei Agricultural Science and Technology, 2002(6): 45.

[57]TOOR R K, SAVAGE G P.Effect of semi-drying on the antioxidant components of tomatoes[J].Food Chemistry, 2006, 94(1): 90-97.

[58]DROUZAS A E, SCHUBERT H.Microwave application in vacuum drying of fruits[J].Journal of Food Engineering, 1996, 28(2): 203-209.

[59]GOULA A M, ADAMOPOULOS K G, CHATZITAKIS P C, et al.Prediction of lycopene degradation during a drying process of tomato pulp[J].Journal of Food Engineering, 2006, 74(1): 37-46.

[60]付露莹, 原双进, 陈浩, 等.喷雾干燥与真空冷冻干燥对核桃粕红枣复合粉品质的影响[J].食品与机械, 2019, 35(1): 204-208.

FU Lu-ying, YUAN Shuang-jin, CHEN Hao, et al.Effect of spray drying and vacuum freeze-drying on quality of walnut meal and jujube compound powder[J].Food & Machinery, 2019, 35(1): 204-208.

A review on the deep-processing of tomato and the utilization of its by-products

LI Ying-hui1 WANG Man-sheng2 SHI Jun-ling1 QU Wen-juan3

(1.Northwestern Polytechnical University, Xian, Shaanxi 710072, China;2.Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China;3.Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

AbstractA comprehensive summary and comparison were carried out on the recently reported results given the types and properties of functional compounds in tomato skin, seed, and residues, as well as the suitable methods and techniques.The processing characteristics of the nutrients in tomato processing by-products were obtained in aspects of lycopene, dietary fiber, oil, and protein and the suitability, properties, advantages and disadvantages of different processing methods and technologies.The problems and the perspectives in the extensive use of tomato by-products were also proposed and discussed.

Keywordstomato; deep processing; by-products; nutrients

基金项目:国家重点研发计划政府间国际科技创新合作重点专项(编号:2017YFE0105300);湖南省自然科学基金(编号:2020JJ5640)

作者简介:李颖慧,女,西北工业大学在读硕士研究生。

共同第一作者:王满生,男,中国农业科学院麻类研究所助理研究员,博士。

通信作者:

师俊玲(1972—),女,西北工业大学教授,博士。

E-mail: sjlshi2004@nwpu.edu.cn

收稿日期:2021-03-04

DOI10.13652/j.issn.1003-5788.2021.10.039