食物中的嘌呤及其在食品加工过程中的降解方法

陈志炎

(扬州大学旅游烹饪学院,江苏 扬州 225127)

摘要:文章对近些年食物中嘌呤含量分布、检测方法应用、烹饪加工嘌呤降解率、低嘌呤食物等方面进行了综述,并对其未来的发展方向进行了展望的研究。

关键词:嘌呤;含量分布;降解率;烹饪加工;研究进展

嘌呤是人体重要的生物碱,主要以嘌呤核苷酸的形式存在,可分为腺嘌呤、鸟嘌呤、次黄嘌呤和黄嘌呤等。腺嘌呤和鸟嘌呤是DNA和RNA的基本构成单元,广泛参与人体多种生命活动[1]。嘌呤代谢紊乱最为常见的临床表现是痛风,而痛风已成为中国第二大代谢类疾病,按照2017年统计数据[2]显示,以每年9.7%的增长速率计算,2020年的痛风患者将达1亿左右。目前最常见的痛风治疗方式是药物治疗,同时必须控制嘌呤食物摄入量。现阶段中国关于食物中嘌呤含量的数据统计还不够完整,且日常生活中如何通过烹饪加工有效去除食物中的嘌呤,建立较为完整的嘌呤降解数据库有待深入研究。文章拟综述近些年对食物中嘌呤含量分布、检测方法应用、烹饪加工嘌呤降解率和低嘌呤食物等研究进展,并展望其未来的发展方向,旨在为痛风患者提供科学有效的饮食指导[3]

1 食物中嘌呤含量分布

1.1 动物性食物嘌呤含量

1.1.1 畜禽类嘌呤含量 畜禽类食物是重要的烹饪原料,是餐桌上必不可少的食材,其嘌呤含量高低对痛风患者饮食具有重要的指导意义。由表1可知,畜禽类嘌呤含量有很大不同,其内脏嘌呤含量普遍偏高,尤其是肝脏,羊肉总嘌呤含量要高于猪肉和牛肉,这与张静[7]的研究结果不同,可能受检测方法、检测品种等方面影响。品种、组织和育龄不同,其嘌呤含量也存在差异,Zheng等[6]研究了杜洛克、莱芜猪、巴马香猪等6种猪肉嘌呤含量,从猪种来看,莱芜猪嘌呤平均含量相对较低(114.2 mg/100 g),而巴马香猪嘌呤平均含量最高(139.3 mg/100 g)。猪肉品质好坏与嘌呤含量存在相关性,猪肉中大理石花纹丰富,肉质鲜红的猪肉嘌呤含量较低[6];猪肉总嘌呤含量与其嫩度、多汁性、油性等呈负相关,而与鲜味不显著,但鸟嘌呤含量与鲜味呈正相关[8]

表1 畜禽类嘌呤含量分布

Table 1 Distribution of purines in domesticated animals and poultries mg/100 g

食物腺嘌呤鸟嘌呤次黄嘌呤黄嘌呤文献牛肉7.20~27.107.60~15.9036.70~87.203.42~22.50[4]牛内脏12.00~95.8012.00~97.300.00~96.600.00~112.00[4]牛排1.497.7818.838.01[5]牛肚5.276.821.622.57[5]牛筋7.7014.3422.7211.68[5]猪肉13.20~23.0010.60~16.6043.60~90.400.00[4]猪蹄10.62±0.8812.65±1.214.87±0.46未检出[6]猪心49.08±6.0527.43±2.1249.53±2.70未检出[6]猪肝84.22±3.43100.13±17.6937.98±2.15未检出[6]羔羊肉10.00~19.406.00~20.7065.30~100.800.00~15.20[4]羊肉30.00~32.0023.00~43.0020.00~54.0018.00~98.00[4]羊肝75.80106.3863.1720.61[5]家禽肉13.00~48.6011.60~43.8022.20~131.000.00~11.30[4]家禽内脏31.30~122.0036.10~153.000.00~71.002.30~138.00[4]

1.1.2 动物性海产品嘌呤含量 海产品种类丰富,其嘌呤含量明显高于畜禽类食物,所以国内外学者对海产品嘌呤的研究相对较多。由表2可知,海产品嘌呤含量较高,痛风患者应严格控制其摄入量,但海产品又是人体食物重要来源,除了建议痛风患者食用海参这类低嘌呤食物外,还可以通过烹饪加工处理降低海产品自身嘌呤含量,如针对部分鱼皮嘌呤含量高的情况,可以采取剥皮或其他烹饪预处理方法去皮等,再辅以恰当的烹调方法,使之符合低嘌呤食用标准,从而丰富痛风患者的饮食品种。

表2 海产品嘌呤含量分布

Table 2 Distribution of purines in seafood mg/kg

食物腺嘌呤鸟嘌呤次黄嘌呤黄嘌呤文献花鲈鱼背部130.50±2.60112.80±7.60799.70±17.00未检出[9]花鲈鱼腹部123.90±21.4082.40±9.90796.70±57.60未检出[9]大菱鲆1461.10±19.50221.30±3.50883.10±29.1079.30±10.30[9]马鲛鱼鱼皮229.70±14.0010030.80±58.901489.90±10.10未检出[9]大马哈鱼157.60±6.00117.40±0.50971.50±29.10未检出[9]南美对虾652.80±37.20266.10±37.30820.70±60.9059.00±13.90[9]海参22.70±14.8061.90±8.00未检出未检出[9]鳕鱼肉127.40±1.47108.74±1.83742.51±2.740.31±0.00[10]踏板鱼内脏16.85±0.01637.32±1.11384.65±1.39160.43±1.96[10]海鲶鱼皮244.51±3.73463.46±13.39380.49±0.0748.56±0.27[11]沙丁鱼背部88.30±0.0562.15±0.08486.70±0.8037.47±0.01[11]沙丁鱼鱼皮118.90±0.121100.16±0.35918.66±2.01121.20±0.05[11]海鳗背部280.04±0.0194.15±0.50302.94±0.528.95±0.05[11]海鳗鱼皮33.50±0.12173.94±0.65219.41±3.0159.71±0.20[11]鳐鱼背部89.50±0.0688.93±0.16372.90±0.10未检出[11]鳐鱼鱼皮130.46±0.03514.27±0.67451.36±0.1413.89±0.03[11]鲭鱼110.00~176.00106.00~484.0050.00~994.000.00~1500.00[12]生蚝394.00~554.00348.00~387.40122.00~230.000.00~821.00[12]

1.2 植物性食物及其他食物中嘌呤含量

植物性食物嘌呤含量相对较少。Kaneko等[4]研究了日本豆制品中嘌呤含量为21.9~172.5 mg/100 g(或100 mL),蘑菇为9.5~142.3 mg/100 g,面条为0.6~12.1 mg/100 g,面包为4.4 mg/100 g,豌豆为19.6~67.1 mg/100 g,乳制品为0.0~1.4 mg/100 g,调味料为0.7~847.1 mg/100 g。张静等[13]通过高效液相色谱法测得金针菇和玫瑰花总嘌呤含量分别为450.00~475.00,985.00~1 350.00 μg/g。刘晓庚等[14]利用荷移光度法测定了中国粮食作物和蔬菜总嘌呤含量,其中籼米为(9.11±0.09)mg/100 g,粳米为(14.82±0.13)mg/100 g,糙米为(22.14±0.10)mg/100 g,小麦为(14.29±0.10)mg/100 g,玉米为(11.64±0.10)mg/100 g,马铃薯为(4.23±0.10)mg/100 g。靳羽慧等[15]采用传统高效液相色谱法检测了金针菇、杏鲍菇总嘌呤含量分别为416,288 mg/100 g,与刘晓庚等[14]的结果基本相同。Kus[16]用液相色谱—三重四极杆串联质谱(LC-QqQ-MS/MS)从13个意大利蜂蜜品种中测定了13个嘌呤和嘧啶衍生物,其化合物含量在不同蜂蜜类型中有所不同。

酒精饮品中嘌呤含量与其酿造原材料有关,刘镇等[17]检测了中国酿造黄酒所用粮食的嘌呤含量,其中小麦嘌呤含量最高,黍米的最低。Wu等[12]从美国农业部数据获得普通啤酒嘌呤含量比白兰地和葡萄酒要高,并且颜色较深、麦芽含量高的啤酒和原浆啤酒的嘌呤含量相对较高(见表3)。

表3 酒精饮料中嘌呤含量

Table 3 Purines in alcoholic beverages mg/100 g

食品品种腺嘌呤鸟嘌呤次黄嘌呤黄嘌呤文献普通啤酒1.634.470.961.42[13]深色啤酒4.156.561.701.10[13]麦芽含量高的奥地利啤酒1.426.940.601.70[13]白兰地0.000.150.180.05[13]葡萄酒0.100.190.220.68[13]

烹饪过程中调味品是必不可少的,目前关于调味品嘌呤检测也有相关数据。丁玉庭等[18]研究表明,总嘌呤含量最高是鸡精和鸡鲜味调味品,高达500 mg/100 g以上,海鲜类酱料和豆类调味品(黄豆酱等)总嘌呤含量分别为150,120 mg/100 g,蔬果类调味品总嘌呤含量较低,约为50 mg/100 g,与张静等[13]的结果一致。

2 嘌呤的检测方法

从20世纪50年代开始发展至今,嘌呤检测方法主要有纸层析法、毛细管电泳法、薄层色谱法、气相色谱法、液相色谱法、离子色谱法和电化学法等[17]。目前嘌呤检测普遍采用高效液相色谱法,而电化学检测法的出现既丰富了嘌呤检测手段,同时也缩短了嘌呤检测时间。黄栋玮等[19]以D大孔树脂和表面增强拉曼光谱相结合的方法研究了鱼肉中鸟嘌呤含量的快速检测方法,此方法检测鱼肉嘌呤含量只需10 min,但检测限低于现在的HPLC方法。Ferrag等[20]研制了一种硫醇功能化溶胶—凝胶基碳陶瓷电极(CCE),通过将金纳米粒子(AuNP)固定在硫醇功能化陶瓷基体中,并在陶瓷溶胶—凝胶孔隙中加入多壁碳纳米管(MWCNT),对CCE进行了进一步的改性,所提出的电极(MWCNT-AuNP-CCE)用于同时测定嘌呤衍生物尿酸、黄嘌呤和咖啡因。王婷婷[21]通过碳材料电极表面结构设计并结合电化学分析技术,采用循环和差分脉冲伏安法建立了嘌呤快速检测方法。Guo等[22]采用重氮化反应,以Au@Ag NPs为活性底物,用SERS检测尿酸,得到总嘌呤含量,此方法可用于替代高效液相色谱测定鱼肉中总嘌呤含量。Zhou等[23]采用纳米复合修饰电极,同时用电化学法测定4种DNA碱基,其鸟嘌呤和腺嘌呤检测限分别低至0.002,0.023 μmol/L,回收率为91.1%~104.7%。

3 食品加工过程中嘌呤的降解方法

3.1 烹饪前预处理加工

中国烹饪的前处理方式主要有浸泡、焯水(水煮)、过油等[24]。宋敏杰等[25]研究了大菱鲆嘌呤含量,其内脏>鱼皮>鱼肉,并且在4 ℃冷藏和-18 ℃冷冻两种贮藏方式中,-18 ℃下鱼肉中总嘌呤含量更低,流水解冻比40 ℃解冻的去除率更好。Li等[26]研究了大菱鲆经3%大蒜素溶液浸泡15 min后,总嘌呤含量下降约61.73%,黄嘌呤含量从27.69 mg/kg降至10.39 mg/kg。黄嘌呤在酸性环境下,以及在pH<7大蒜素溶液中的热稳定性较差。因此,在大蒜素溶液中浸泡后煮沸的样品具有较高降解率。任丽琨[27]采用浸泡、水煮以及浸泡+水煮的方式进行前处理海产鱼类,所测得大蒜粉浸泡+水煮的方式的嘌呤脱出效果最好,其中以鱼肉和鱼皮脱除率最高(70.35%),此外还发现在-18 ℃环境中,4种嘌呤变化并不明显,这与Li等[26]的结果相同,说明大蒜对海产鱼类嘌呤含量有一定的降解作用。同时宋敏杰等[25]和任丽琨[27]研究表明,对于海鲜产品,最好采用低温冷冻的保存方式。浸泡除了能降低海产品嘌呤含量外,对豆类也具有相同作用,李越佳等[28]采用高效液相色谱测定了大豆经过4%氯化钙溶液在60 ℃浸泡2.5 h后,总嘌呤下降了27.11%。

3.2 食品加工工艺对嘌呤含量的影响

Li等[11]研究了大菱鲆等4种海产品嘌呤在煮沸加工时的降解率,煮沸后大菱鲆皮肤总嘌呤含量从1 596.68 mg/kg 下降至1 117.41 mg/kg,次黄嘌呤降幅最大,腺嘌呤和鸟嘌呤分别下降了35.71%和23.20%,此外还发现嘌呤降解率和煮沸时间有很大关系,3~15 min嘌呤变化最大,15 min后趋于平稳。Takayanagi等[29]使用日本传统酒糟浸泡箭鱼后,其总嘌呤、次黄嘌呤、鸟嘌呤含量均得到有效降解,降低了箭鱼中IMP含量,同时提高了酒渣中肌苷含量。Fukuuchi等[30]检测了鸡汤、清汤、干鲣鱼汤3种汤料嘌呤含量,其中肌酐单磷酸最丰富,其次是次黄嘌呤,其随煮制时间的增加而增加。Takayanagi 等[31]采用高效液相色谱法(HPLC)测定了凤尾鱼生鱼和发酵后的总嘌呤和游离嘌呤含量,结果表明,发酵后腺嘌呤、次黄嘌呤和总嘌呤含量均显著下降。Zhang等[32]研究了鱿鱼在贮藏10 d后,600 MPa高压下能使次黄嘌呤和腺嘌呤产生最大降解。张滋慧[33]对比了400 W微波和40 kHz超声波处理沙丁鱼和带鱼的嘌呤变化,超声波对沙丁鱼嘌呤降解率要优于带鱼,而微波对带鱼嘌呤降解率要高于沙丁鱼,此外,对比了水煮、蒸、油炸、烧烤、真空低温5种烹饪方法对带鱼和沙丁鱼嘌呤降解率的影响,其中水煮的降解率最高。Clarian等[34]采用超高液相色谱—串联质谱法检测了猪肉—干火腿—熟火腿制作过程的嘌呤变化,结果显示次黄嘌呤和黄嘌呤分别上升了2.6倍和16.4倍。

4 低嘌呤食物加工

低嘌呤食物对控制痛风患者体内总嘌呤水平有重要作用,所以研发低嘌呤食物对丰富患者饮食至关重要。目前国内外对低嘌呤食物的研究方法主要有吸附法、外加酶法、超声波和微生态法等[35-37]。庞远祥等[38]研究了枯草芽孢杆菌发酵低嘌呤产品条件,得到的最优工艺为pH 6.0,发酵温度38 ℃,接种量3%。Trautwein-Schult等[39]采用酵母Arxula adeninivorans LS3生产重组鸟嘌呤脱氨酶能有效降解食品中鸟嘌呤含量,减少人体对膳食中鸟嘌呤的摄入量。孙宏等[40]采用花椒粉水浸泡大菱鲆鱼片,其中花椒粉添加量为2%,浸泡45 min,水煮8 min,其含量比鲜大菱鲆鱼片减少了58.07%,并且有利于在4 ℃下贮藏保鲜。毛玉涛等[41]采用新型GCB吸附剂,吸附脱出了豆浆中57.23%的嘌呤,并保持了豆浆良好的口感。Mahor等[42]对印度市场上16种不同啤酒中嘌呤含量进行定量分析,啤酒样品经ADA和GDA酶促处理后,腺嘌呤和鸟嘌呤含量显著降低,同时对其口感的影响相对较小。

5 总结

目前中国痛风患者呈逐年上升趋势,已然成为第二大代谢类疾病,其主要治疗方法是通过服用药物来控制体内总嘌呤水平,此外,还须注意控制膳食嘌呤摄入量,所以日常膳食中食物嘌呤数据指导至关重要。纵观目前嘌呤相关研究,主要集中在不同食物嘌呤含量检测以及低嘌呤食物加工处理,且存在以下不足:① 食物选取覆盖面不广;② 食物嘌呤降解数据库不足。基于以上问题,应根据中国居民饮食特点,选取中国居民餐桌上出现频率较高的食物进行嘌呤含量检测,最大范围建立食物嘌呤数据库;同时应将食物嘌呤降解结合中国的烹饪文化,以日常生活常见烹饪方法为基础,结合不同烹饪食材,从不同烹饪方法组合、烹饪工艺参数方面探究高嘌呤食物在烹饪过程中降解的影响因素,并分析食物嘌呤降解的内在机理,为低嘌呤食物研究提供可靠的理论依据。同时,从嘌呤在食物中的含量分布、低嘌呤食物、嘌呤降解3个方面建立较为完整的食物嘌呤数据库,为痛风患者提供健康科学的合理饮食。

参考文献

[1]张晓洁, 姜林娣.尿酸代谢异常与慢性炎症的新认识[J].中华医学杂志, 2018, 98(13): 963-964.

ZHANG Xiao-jie, JIANG Lin-di.New understanding of abnormal uric acid metabolism and chronic inflammation[J].National Medical Journal of China, 2018, 98(13): 963-964.

[2]滕瑜, 王桂宾, 王本新, 等.水产品嘌呤与人类痛风的相关性评估[J].食品安全质量检测学报, 2019, 10(21): 123-127.

TENG Yu, WANG Gui-bin, WANG Ben-xin, et al.Assessment of the correlation between aquatic purine and human gout[J].Journal of Food Safety and Quality, 2019, 10(21): 123-127.

[3]蔡路昀, 张滋慧, 曹爱玲, 等.食品中的嘌呤含量分布及在贮藏加工中变化研究进展[J].食品科学, 2018, 39(19): 260-265.

CAI Lu-yun, ZHANG Zi-hui, CAO Ai-ling, et al.Advances in research on purine distribution in foods and its changes during storage and processing[J].Food Science, 2018, 39(19): 260-265.

[4]KANEKO K, TAKAYANAGI F, FUKUUCHI T, et al.Determination of total purine and purine base content of 80 food products to aid nutritional therapy for gout and hyperuricemia[J].Nucleosides Nucleotides & Nucleic Acids, 2020, 39(10/11/12): 1 449-1 457.

[5]王静莹, 薄海波, 吉生军, 等.高效液相色谱法测定牛羊杂碎等肉类中嘌呤及尿酸[J].食品与发酵工业, 2017, 43(4): 232-237.

WANG Jing-ying, BO Hai-bo, JI Sheng-jun, et al.Determination of purine and uric acid in cooked cow and sheep offal by high performance liquid[J].Food and Fermentation Industries, 2017, 43(4): 232-237.

[6]ZHENG Min, HUANG Yi-zhong, JI Jiu-xiu, et al.Effects of breeds, tissues and genders on purine contents in pork and the relationships between purine content and other meat quality traits[J].Meat Science, 2018, 143: 81-86.

[7]张静.常见食品中嘌呤类组分及其在加工贮藏中的变化规律研究[D].杭州: 浙江工业大学, 2020: 7.

ZHANG Jing.Study on purine components incommon foods and the change rule during storage and processing[D].Hangzhou:Zhejiang University of Technology, 2020: 7.

[8]HUANG Cong, ZHENG Min, HUANG Yi-zhong, et al.The effect of purine content on sensory quality of pork[J].Meat Science, 2021, 172: 108346.

[9]QU Xin, SUI Jian-xin, MI Na-sha, et al.Determination of four different purines and their content change in seafood by high-performance liquid chromatography[J].Journal of the Science of Food and Agriculture, 2017, 97(2): 520-525.

[10]李婷婷, 任丽琨, 王当丰, 等.高效液相色谱法测定海水鱼中嘌呤含量[J].中国食品学报, 2020, 20(5): 266-275.

LI Ting-ting, REN Li-kun, WANG Dang-feng, et al.Determination of purines content of sea fish by high performance liquid chromatograp[J].Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 266-275.

[11]LI Ting-ting, REN Li-kun, WANG Dang-feng, et al.Optimization of extraction conditions and determination of purine content in marine fish during boiling[J].Peer J, 2019, 7(5): e6690.

[12]WU Bei-wen, ROSELAND J M, HAYTOWITZ D B, et al.Availability and quality of published data on the purine content of foods, alcoholic beverages, and dietary supplements[J].Journal of Food Composition and Analysis, 2019, 84: 103281.

[13]张静, 杨平荣, 王燕萍, 等.高效液相色谱法同时测定玫瑰花等多种食物中尿酸及4种嘌呤含量[J].兰州大学学报(医学版), 2019(3): 28-33.

ZHANG Jing, YANG Ping-rong, WANG Yan-ping, et al.Simultaneous determination by high performance liquid chromatography of uric acid and purine contents inmany kinds of foods such as rose[J].Journal of Lanzhou University(Medical Sciences), 2019(3): 28-33.

[14]刘晓庚, 刘季敏, 何诗雨, 等.荷移光度法测定谷物中嘌呤含量的实验[J].中国粮油学报, 2018, 33(10): 139-146.

LIU Xiao-geng, LIU Ji-ming, HE Shi-yu, et al.Determination of purine contents in grains by charge-transfer complexation spectrophotometry[J].Journal of the Chinese Cereals and Oils Association, 2018, 33(10): 139-146.

[15]靳羽慧, 邓楚君, 赵慧, 等.3种常见食用菌营养成分和嘌呤物质含量分析[J].中国食用菌, 2018, 37(4): 62-65.

JIN Yu-hui, DENG Chu-jun, ZHAO Hui, et al.Analytical determination on nutrients and purine contents of three common Edible[J].Edible Fungi of China, 2018, 37(4): 62-65.

[16]KUS P M.LC-QqQ-MS/MS methodology for determination of purine and pyrimidine derivatives in unifloral honeys and application of chemometrics for their classification[J].Food Chemistry, 2021, 348: 129076.

[17]刘镇, 周婷婷, 王灵芝, 等.酿造黄酒用粮食原料中嘌呤的检测研究[J].酿酒科技, 2020(4): 107-110.

LIU Zhen, ZHOU Ting-ting, WANG Ling-zhi, et al.Determination of purines in grain raw materials for brewing rice wine[J].Liquor-Making Science & Technology, 2020(4): 107-110.

[18]丁玉庭, 张静, 周绪霞, 等.常见食品及调味品中嘌呤类组分含量分析及分布规律[J].食品发酵与工业, 2020, 46(15): 276-281.

DING Yu-ting, ZHANG Jing, ZHOU Xu-xia, et al.Analysis and distribution of purine components in common foods and condiments[J].Food and Fermentation Industries, 2020, 46(15): 276-281.

[19]黄栋玮, 谷贵章, 胡科娜, 等.基于D152树脂吸附蛋白质结合SERS测定鱼肉中的鸟嘌呤含量[J/OL].食品科学.(2020-12-11)[2021-04-24].https://kns.cnki.net/kcms/detail/11.2206.ts.20201211.1707.038.html.

HUANG Dong-wei, GU Gui-zhang, HU Ke-na, et al.Detection of guanine based on macroporous resin purification and SERS in fish meat[J/OL].Food Science.(2020-12-11)[2021-04-24].https://kns.cnki.net/kcms/detail/11.2206.ts.20201211.1707.038.html.

[20]FERRAG C, NOROOZIFAR M, KERMAN K.Thiol functionalized carbon ceramic electrode modified with multi-walled carbon nanotubes and gold nanoparticles for simultaneous determination of purine derivatives[J].Materials Science and Engineering, 2020, 110: 129076.

[21]王婷婷.碳材料电极的表面结构设计及其对嘌呤类物质电化学检测的应用研究[D].大连: 大连理工大学, 2020: 43.

WANG Ting-ting.Design of the surface of carbon material based electrode and its application to simultaneous detection of purine compounds[D].Dalian: Dalian University of Technololgy, 2020: 43.

[22]GUO Xiao-ying, WANG Xin-yu, HUANG Dong-wei, et al.Method study on determination of total purine content in fish meat by diazotization reaction combined with SERS[J].LWT-Food Science and Technology, 2020, 123: 109027.

[23]ZHOU Jia-yun, LI Shao-pei, NOROOZIFAR M.Graphene oxide nanoribbons in chitosan for simultaneous electrochemical detection of guanine, adenine, thymine and cytosine[J].Biosensors Basel, 2020, 10(4): 30.

[24]周惠健, 周瑞铮, 吴满刚, 等.啤酒对红烧老鹅品质的影响[J].中国调味品, 2019, 44(1): 26-31, 37.

ZHOU Hui-jian, ZHOU Rui-zheng, WU Man-gang, et al.Effect of beer on the quality of braised old geese[J].China Condiment, 2019, 44(1): 26-31, 37.

[25]宋敏杰, 李婷婷, 任丽琨, 等.贮藏和解冻方式对大菱鲆嘌呤含量的影响[J].中国食品学报, 2020, 20(7): 143-150.

SONG Min-jie, LI Ting-ting, REN Li-kun, et al.Effects of storage and thawing methods on the content of purine in Turbot[J].Journal of Chinese Institute of Food Science and Technology, 2020, 20(7): 143-150.

[26]LI Ting-ting, REN Li-kun, WANG Dang-feng, et al.Effect of allicin and its mechanism of action in purine removal in turbot[J].Journal of Food Science, 2020, 85(10): 3 562-3 569.

[27]任丽琨.基于HPLC的嘌呤碱基检测方法的建立及海水鱼嘌呤脱除探究[D].锦州: 渤海大学, 2019: 70-71.

REN Li-kun.Study on the detection and removal of purine bases in marine fishes based on HPLC[D].Jinzhou: Bohai University, 2019: 70-71.

[28]李越佳, 成玉梁, 郭亚辉, 等.浸泡条件对整粒大豆嘌呤含量的影响[J].大豆科学, 2018, 37(2): 295-302.

LI Yue-jia, CHENG Yu-liang, GUO Ya-hui, et al.Effect of soaking conditions on purine content in whole soybean[J].Soybean Science, 2018, 37(2): 295-302.

[29]TAKAYANAGI F, FUKUUCHI T, YAMAOKA N, et al.The observed variation in the purine composition of food after soaking in sake lees[J].Nucleosides Nucleotides & Nucleic Acids, 2018, 37(6): 348-352.

[30]FUKUUCHI T, IYAMA N, YAMAOKA N, et al.Simultaneous quantification by HPLC of purines in umami soup stock and evaluation of their effects on extracellular and intracellular purine metabolismt[J].Nucleosides Nucleotides & Nucleic Acids, 2018(37): 273-239.

[31]TAKAYANAGI F, FUKUUCHI T, YAMAOKA N, et al.Measurement of the total purine contents and free nucleosides, nucleotides, and purine bases composition in Japanese anchovies(Engraulis japonicus)using high-performance liquid chromatography with UV detection[J].Nucleosides Nucleotides & Nucleic Acids, 2020, 39(10/11/12): 1 458-1 464.

[32]ZHANG Yi-feng, WANG Gang, JIN Ya-fang, et al.Effects of high hydrostatic pressure processing on purine, taurine, cholesterol, antioxidant micronutrients and antioxidant activity of squid(Todarodes pacificus)muscles[J].Food Control, 2016, 60: 189-195.

[33]张滋慧.水产品中嘌呤含量的测定及脱嘌呤方法研究[D].锦州: 渤海大学, 2016: 34-35.

ZHANG Zi-hui.Study on the purine content of aquatic products and purine removing method[D].Jinzhou: Bohai University, 2016: 34-35.

[34]CLARIANA M, GRATACS-CUBARS M, HORTS M, et al.Analysis of seven purines and pyrimidines in pork meat products by ultra high performance liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A, 2010, 1 217(26): 4 294-4 299.

[35]刘建林, 孙学颖, 辛晓琦, 等.食品中嘌呤的降低方法及低嘌呤产品研究进展[J].食品研究与开发, 2020, 41(2): 187-192.

LIU Jian-lin, SUN Xue-ying, XIN Xiao-qi, et al.Research progress of methods of purine reduction and low purine products in food[J].Food Research and Development, 2020, 41(2): 187-192.

[36]陆文浩.吸附剂对食物中嘌呤类物质的吸附[D].武汉: 湖北大学, 2018: 4-7.

LU Wen-hao.Adsorption of purines in food by adsorbents[D].Wuhan: Hubei University, 2018: 4-7.

[37]毛玉涛, 王明力, 张洪, 等.吸附剂对豆浆中嘌呤物质的吸附[J].食品与机械, 2012, 28(6): 47-49, 54.

MAO Yu-tao, WANG Ming-li, ZHANG Hong.Research on adsorption of purine compounds in soybean milk by sorbents[J].Food & Machinery, 2012, 28(6): 47-49, 54.

[38]庞远祥, 谢远红, 金君华, 等.低嘌呤、高纳豆激酶活性枯草芽孢杆菌SH21筛选及发酵条件优化[J].食品与发酵工业, 2021, 47(11): 194-199.

PANG Yuan-xiang, XIE Yuan-hong, JIN Jun-hua, et al.Isolation and optimization of bacillus subtilis SH21 for low purine and high nattokinase activity[J].Food and Fermentation Industries, 2021, 47(11): 194-199.

[39]TRAUTWEIN-SCHULT A, JANKOWSKA D, CORDES A, et al.Arxula adeninivorans recombinant guanine deaminase and its application in the production of food with low purine content[J].Journal of Molecular Microbiology and Biotechnology, 2014, 24(2): 67-81.

[40]孙宏, 李婷婷, 宋敏杰, 等.预制调理低嘌呤大菱鲆鱼片的制备及品质研究[J].食品工业科技, 2021, 42(2): 58-62, 69.

SUN Hong, LI Ting-ting, SONG Min-jie, et al.Preparation and quality of pre-conditioned low purine turbot fillet[J].Science and Technology of Food Industy, 2021, 42(2): 58-62, 69.

[41]毛玉涛, 樊平, 黄洋, 等.UPLC法测定豆浆中嘌呤含量及GCB对嘌呤吸附的研究[J].中国粮油学报, 2021, 36(5): 159-164.

MAO Yu-tao, FAN Ping, HUANG Yang, et al.Determination of purine in soybean milk by uplc and adsorption research of purine by gcb[J].Joumal of the Chinese Cereals and Oils Association, 2021, 36(5): 159-164.

[42]MAHOR D, PRASAD G S.Biochemical characterization of kluyveromyces lactis adenine deaminase and guanine deaminase and their potential application in lowering purine content in beer[J].Frontiers in Bioengineering and Biotechnology, 2018(6): 10 180.

Research progress on distribution of purine in food and cooking process

CHEN Zhi-yan

(School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China)

AbstractThis paper summarizes purine distribution in foods, practices of inspection, degradation rate of purine in cooking process and low-purine foods, and the future development direction is also prospected, which to provide reasonable and scientific Diet Guidance to Gout patients.

Keywordspurine; distribution; degradation rate; cooking process; research progress

基金项目:国家自然科学基金项目(编号:32001743);江苏省自然科学基金(编号:BK20180922);烹饪科学四川省高等学校重点实验室开放基金项目(编号:PRKX2020Z17)

作者简介:

陈志炎(1982—),男,扬州大学副教授,硕士。

E-mail:zhiyan@yzu.edu.cn

收稿日期:2021-03-14

DOI10.13652/j.issn.1003-5788.2021.10.036